Boxster Parts Catalog Boxster Accessories Catalog Boxster Technical Articles Boxster Tech Forums
 
  Search our site:    
View Recent Cars  |   Cart  | Project List | Order Status | Help    
Bookmark and Share

Pelican Technical Article:

Dyno Testing

Time:

101

Tools:

Shop Dyno

Applicable Models:

Porsche 986 Boxster (1997-04)
Porsche 986 Boxster S (2000-04)

Parts Required:

-

Hot Tip:

Get a group of friends together for "dyno day" and save money

Performance Gain:

Figuring out if your car is running at peak performance

Complementary Modification:

Tune-up
101 Performance Projects for Your Porsche Boxster

This article is one in a series that have been released in conjunction with Wayne's new book, 101 Performance Projects for Your Porsche Boxster. The book contains 312 pages of full color projects detailing everything from performance mods to changing your brake pads. With more than 950+ full-color glossy photos accompanying extensive step-by-step procedures, this book is required reading in any Boxster owner's collection. The book is currently available and in stock now. See The Official Book Website for more details.

What project book would be complete without a section on dynamometer testing? One of the neatest trips you can make is to your local dyno shop. For about $100 or so, you can make a few runs on the dyno, and actually measure the horsepower that is generated by your engine. The whole process is somewhat complicated, with varying degrees of detail and accuracy, but for the sake of this section, we'll just cover the basics.

What is a dyno? Short for dynamometer, the dyno measures the horsepower output by your engine. There are two basic types of dynos, one that you bolt the engine up to and run, and one that measures horsepower at the rear wheels of your car. This is also called RWHP (rear wheel horsepower). Most modern dyno testing is performed on a rolling dyno that measures the power output at the wheels. You drive your car onto big rollers and accelerate at full throttle until you reach your rev limit. Then, you let the clutch out and let the rollers spin down freely. Large fans and environmental controls aim to keep the test environment at a steady state so that you can compare dyno runs. The dyno works by placing a load on the car, similar to how you would experience air friction as you were driving down the road at high speeds. By measuring this load, combined with the total RPM of the vehicle, a graph of the power output by the car can be derived.

Torque / Horsepower - The dyno actually measures the torque output by your rear wheels. Torque is a measurement of rotational force, and is related to the overall power output by your engine. The horsepower output by your engine is equivalent to the following formula, which is derived from an early English standard:

Horsepower = Torque x RPM / 5252

This translates into a power relation that horsepower is defined as 33,000 ft-lb (force) per minute. This is also referred to as the horsepower definition as defined by the Society of Automotive Engineers (SAE Horsepower).

You may have also seen other definitions for horsepower and wondered what they meant. European documentation often gives horsepower numbers in kilowatts. For reference, one horsepower equals 0.746 kilowatts. Porsche's ratings are often listed in the European standard of DIN HP or kilowatts (kW). One DIN horsepower is rated as the power required to raise 450,000 kilograms one centimeter in one minute (or about .73 kW). The values of SAE and DIN horsepower are very similar, with 1 SAE HP being equal to .98629 DIN HP. For all practical purposes, you can think of them as relatively the same.

You may have also heard the term brake horsepower (BHP). Brake horsepower is measured at the flywheel of the engine with no load from the chassis, without any electrical or mechanical accessories attached, under ideal fuel and timing conditions. In modern terms, the brake horsepower figure would be mostly associated with what is now called gross horsepower.

Air/Fuel Measurement: In addition to measuring output torque and RPM, some dynos can also monitor your air/fuel mixture. This will allow you to adjust the mixture tables on a custome engine map to correctly match the power output (see Pelican Technical Article: Installing Performance DME Map Software). In other words, if you find that your engine is running lean at 4500 RPM, you can adjust the fuel injection mixture to richen it up and produce more ideal combustion. This translates to more horsepower output from the engine.

Dyno Results: The dyno will generate a graph of horsepower versus RPM for the engine being tested. With this graph, you will be able to determine the engine's peak horsepower and peak torque. The graph will also show you the peak horsepower output from the engine. On a six-cylinder Boxster engine, this will typically be at the higher end of the RPM range, near 6000 RPM. The engine will peak in horsepower, and then fall off dramatically as the rev-limiter in the engine cuts off the ignition system.

Comparing Results: An unfortunate downside to dyno tests is that they often cannot be accurately compared to one another. Environmental conditions play a large part in these variances, as well as the fact that the large dynos can not be easily calibrated. As a result, tests from the same dyno with the same car, on different days may produce different results. Even the manufacturers of some dynamometers admit that their dyno at one location may test 5-10% differently than the same model at another location. When you consider that the figure may become bigger when you include dynos from different manufacturers, the ability to accurately compare results becomes significantly less useful.

An important issue to mention with respect to dyno figures is that the test is influenced heavily by environmental conditions. This includes, temperature, humidity, and altitude to name a few. Since conditions may change from day to day, dyno runs that span multiple days may produce different results.

Engine Optimization: As previously mentioned, dyno testing can be very subjective. Other than bragging rights, pure dyno numbers are not very useful. The true benefit of the dyno test comes when you are able to use it to optimize your engine. Particularly with software ECU flashes (Pelican Technical Article: Installing Performance DME Map Software), you really need extensive dyno testing in order to determine what your optimum operating parameters should be on the fuel ratio and ignition timing maps. The factory used the same type of procedure to optimize and program the Bosch Motronic factory maps used in the stock engine management system.

In order to gain the most horsepower out of your engine, you need to perform several dyno runs while varying many different engine parameters (timing, mixture, advance curve, etc.). Only after carefully analyzing the data can you determine what the best values are for your engine management system map. Measuring the power output of the engine will allow you to optimize your engine and get the peace of mind knowing that you are extracting the maximum horsepower that you possibly can.

Driveline Losses: Since the dyno testing is performed using rollers on your car, there are going to be forces that are going to slow down and reduce the power in-between the flywheel and the rear wheels. These driveline losses include friction from the transmission, losses from brake discs dragging slightly, and friction in the wheel bearings. On the Boxster, typical driveline losses are often estimated at about 15%, although modifications to the chassis can raise or lower that value. Through a complicated process of calculations that are computed by the dynamometer, you can calculate your driveline losses by counting the time it takes the dyno rollers to stop when you let out the clutch. Using these calculations, you can then estimate what your horsepower output is at the flywheel.

Transmission Gearing: One of the benefits of dyno testing is the ability to design your transmission ratios to meet the exact power characteristics of your engine. Depending upon where you want optimum performance, you can install taller or shorter gears into any of the five or six speeds on your transmission. The results of the dyno test will give you specific horsepower numbers for each RPM range, and allow you to tailor your transmission gearing to suit your desires.

Software Dynos: This is what I call the poor man's dyno. It is software that plugs into your Boxster's OBD-II port and estimates power and torque based upon a variety of factors. The AutoEnginuity software that you can use to monitor OBD-II functions also has a very good dyno emulator built in. With pre-programmed profiles for the Boxster, it has proven itself to be extremely accurate in predicting engine performance. See Project 20 for details.

This photo shows Gary Hand's supercharged Porsche Boxster getting ready for the dyno.
Figure 1

This photo shows Gary Hand's supercharged Porsche Boxster getting ready for the dyno. Engine modifications include a Turbowerx twin turbo and intercooler, ECU reflash, custom headers, EVO cold air intake, and a TechArt muffler. For this test, the car was driven slowly through its full RPM range on the dyno while carefully recording all of the applicable data. Conditions were tightly controlled using fans and air temp/humidity measurement devices to ensure that the environment remains constant between dyno runs.

Shown here is a typical dyno graph for three separate runs.
Figure 2

Shown here is a typical dyno graph for three separate runs. The graph shows rear wheel peak horsepower of about 242 HP. Note that as per the relationship between torque and horsepower, they are equal when the RPM has reached 5252.

Bookmark and Share
Comments and Suggestions:
milt Comments: The onboard computer needs to know that the car is on a dyno. The front wheels sensors have to be bypassed or the car won't run correctly. Not sure what software you need for this.
April 24, 2011
  Followup from the Pelican Staff: You will have to disable traction control, if equipped, other than that it should be OK to run. A warning light for the ABS will be set, but once you drive the vehicle the light will go out. - Nick at Pelican Parts  

  Search our site:    

View Cart & CheckOut | Project List | Order Status |  Help    

 

[Home] [Customer Service] [Shopping Cart] [Project/Wish List]
  [Privacy Statement]  [Contact Us] [About Us] [Shipping] [Careers]

Copyright © Pelican Parts Inc. -    DMCA Registered Agent Contact Page

Page last updated: Mon 12/5/2016 02:10:10 AM